direct product, p-group, metabelian, nilpotent (class 3), monomial
Aliases: C22×C4.10D4, M4(2).22C23, (C2×C4).2C24, (C23×C4).23C4, (Q8×C23).9C2, C24.126(C2×C4), (C22×C4).776D4, C4.132(C22×D4), (C22×Q8).29C4, C22.15(C23×C4), (C2×Q8).326C23, C23.221(C22×C4), (C23×C4).510C22, (C22×C4).896C23, C23.231(C22⋊C4), (C22×M4(2)).25C2, (C22×Q8).452C22, (C2×M4(2)).332C22, C4.70(C2×C22⋊C4), (C2×C4).1400(C2×D4), (C22×C4).87(C2×C4), (C2×Q8).200(C2×C4), (C2×C4).243(C22×C4), C2.29(C22×C22⋊C4), C22.79(C2×C22⋊C4), (C2×C4).280(C22⋊C4), SmallGroup(128,1618)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C22×C4.10D4
G = < a,b,c,d,e | a2=b2=c4=1, d4=c2, e2=dcd-1=c-1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, ce=ec, ede-1=c-1d3 >
Subgroups: 556 in 368 conjugacy classes, 180 normal (9 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, Q8, C23, C23, C23, C2×C8, M4(2), M4(2), C22×C4, C22×C4, C2×Q8, C2×Q8, C24, C4.10D4, C22×C8, C2×M4(2), C2×M4(2), C23×C4, C23×C4, C22×Q8, C22×Q8, C2×C4.10D4, C22×M4(2), Q8×C23, C22×C4.10D4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, C24, C4.10D4, C2×C22⋊C4, C23×C4, C22×D4, C2×C4.10D4, C22×C22⋊C4, C22×C4.10D4
(1 27)(2 28)(3 29)(4 30)(5 31)(6 32)(7 25)(8 26)(9 50)(10 51)(11 52)(12 53)(13 54)(14 55)(15 56)(16 49)(17 59)(18 60)(19 61)(20 62)(21 63)(22 64)(23 57)(24 58)(33 46)(34 47)(35 48)(36 41)(37 42)(38 43)(39 44)(40 45)
(1 55)(2 56)(3 49)(4 50)(5 51)(6 52)(7 53)(8 54)(9 30)(10 31)(11 32)(12 25)(13 26)(14 27)(15 28)(16 29)(17 38)(18 39)(19 40)(20 33)(21 34)(22 35)(23 36)(24 37)(41 57)(42 58)(43 59)(44 60)(45 61)(46 62)(47 63)(48 64)
(1 25 5 29)(2 30 6 26)(3 27 7 31)(4 32 8 28)(9 52 13 56)(10 49 14 53)(11 54 15 50)(12 51 16 55)(17 57 21 61)(18 62 22 58)(19 59 23 63)(20 64 24 60)(33 48 37 44)(34 45 38 41)(35 42 39 46)(36 47 40 43)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 60 29 24 5 64 25 20)(2 23 26 59 6 19 30 63)(3 58 31 22 7 62 27 18)(4 21 28 57 8 17 32 61)(9 47 56 36 13 43 52 40)(10 35 53 46 14 39 49 42)(11 45 50 34 15 41 54 38)(12 33 55 44 16 37 51 48)
G:=sub<Sym(64)| (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,25)(8,26)(9,50)(10,51)(11,52)(12,53)(13,54)(14,55)(15,56)(16,49)(17,59)(18,60)(19,61)(20,62)(21,63)(22,64)(23,57)(24,58)(33,46)(34,47)(35,48)(36,41)(37,42)(38,43)(39,44)(40,45), (1,55)(2,56)(3,49)(4,50)(5,51)(6,52)(7,53)(8,54)(9,30)(10,31)(11,32)(12,25)(13,26)(14,27)(15,28)(16,29)(17,38)(18,39)(19,40)(20,33)(21,34)(22,35)(23,36)(24,37)(41,57)(42,58)(43,59)(44,60)(45,61)(46,62)(47,63)(48,64), (1,25,5,29)(2,30,6,26)(3,27,7,31)(4,32,8,28)(9,52,13,56)(10,49,14,53)(11,54,15,50)(12,51,16,55)(17,57,21,61)(18,62,22,58)(19,59,23,63)(20,64,24,60)(33,48,37,44)(34,45,38,41)(35,42,39,46)(36,47,40,43), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,60,29,24,5,64,25,20)(2,23,26,59,6,19,30,63)(3,58,31,22,7,62,27,18)(4,21,28,57,8,17,32,61)(9,47,56,36,13,43,52,40)(10,35,53,46,14,39,49,42)(11,45,50,34,15,41,54,38)(12,33,55,44,16,37,51,48)>;
G:=Group( (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,25)(8,26)(9,50)(10,51)(11,52)(12,53)(13,54)(14,55)(15,56)(16,49)(17,59)(18,60)(19,61)(20,62)(21,63)(22,64)(23,57)(24,58)(33,46)(34,47)(35,48)(36,41)(37,42)(38,43)(39,44)(40,45), (1,55)(2,56)(3,49)(4,50)(5,51)(6,52)(7,53)(8,54)(9,30)(10,31)(11,32)(12,25)(13,26)(14,27)(15,28)(16,29)(17,38)(18,39)(19,40)(20,33)(21,34)(22,35)(23,36)(24,37)(41,57)(42,58)(43,59)(44,60)(45,61)(46,62)(47,63)(48,64), (1,25,5,29)(2,30,6,26)(3,27,7,31)(4,32,8,28)(9,52,13,56)(10,49,14,53)(11,54,15,50)(12,51,16,55)(17,57,21,61)(18,62,22,58)(19,59,23,63)(20,64,24,60)(33,48,37,44)(34,45,38,41)(35,42,39,46)(36,47,40,43), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,60,29,24,5,64,25,20)(2,23,26,59,6,19,30,63)(3,58,31,22,7,62,27,18)(4,21,28,57,8,17,32,61)(9,47,56,36,13,43,52,40)(10,35,53,46,14,39,49,42)(11,45,50,34,15,41,54,38)(12,33,55,44,16,37,51,48) );
G=PermutationGroup([[(1,27),(2,28),(3,29),(4,30),(5,31),(6,32),(7,25),(8,26),(9,50),(10,51),(11,52),(12,53),(13,54),(14,55),(15,56),(16,49),(17,59),(18,60),(19,61),(20,62),(21,63),(22,64),(23,57),(24,58),(33,46),(34,47),(35,48),(36,41),(37,42),(38,43),(39,44),(40,45)], [(1,55),(2,56),(3,49),(4,50),(5,51),(6,52),(7,53),(8,54),(9,30),(10,31),(11,32),(12,25),(13,26),(14,27),(15,28),(16,29),(17,38),(18,39),(19,40),(20,33),(21,34),(22,35),(23,36),(24,37),(41,57),(42,58),(43,59),(44,60),(45,61),(46,62),(47,63),(48,64)], [(1,25,5,29),(2,30,6,26),(3,27,7,31),(4,32,8,28),(9,52,13,56),(10,49,14,53),(11,54,15,50),(12,51,16,55),(17,57,21,61),(18,62,22,58),(19,59,23,63),(20,64,24,60),(33,48,37,44),(34,45,38,41),(35,42,39,46),(36,47,40,43)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,60,29,24,5,64,25,20),(2,23,26,59,6,19,30,63),(3,58,31,22,7,62,27,18),(4,21,28,57,8,17,32,61),(9,47,56,36,13,43,52,40),(10,35,53,46,14,39,49,42),(11,45,50,34,15,41,54,38),(12,33,55,44,16,37,51,48)]])
44 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 4A | ··· | 4H | 4I | ··· | 4P | 8A | ··· | 8P |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
size | 1 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 4 |
type | + | + | + | + | + | - | ||
image | C1 | C2 | C2 | C2 | C4 | C4 | D4 | C4.10D4 |
kernel | C22×C4.10D4 | C2×C4.10D4 | C22×M4(2) | Q8×C23 | C23×C4 | C22×Q8 | C22×C4 | C22 |
# reps | 1 | 12 | 2 | 1 | 4 | 12 | 8 | 4 |
Matrix representation of C22×C4.10D4 ►in GL8(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 16 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 11 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 6 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 16 |
0 | 0 | 0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 6 | 0 | 0 | 0 | 0 |
0 | 0 | 11 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 5 | 12 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 12 |
0 | 0 | 0 | 0 | 12 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 5 | 0 | 0 |
G:=sub<GL(8,GF(17))| [16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,11,16,0,0,0,0,0,0,1,6,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0],[0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,16,11,0,0,0,0,0,0,6,1,0,0,0,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,12,5,0,0,0,0,5,12,0,0,0,0,0,0,12,12,0,0] >;
C22×C4.10D4 in GAP, Magma, Sage, TeX
C_2^2\times C_4._{10}D_4
% in TeX
G:=Group("C2^2xC4.10D4");
// GroupNames label
G:=SmallGroup(128,1618);
// by ID
G=gap.SmallGroup(128,1618);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,456,2804,2028,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^4=1,d^4=c^2,e^2=d*c*d^-1=c^-1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*e=e*c,e*d*e^-1=c^-1*d^3>;
// generators/relations